Identifying suspected breast cancer: development and validation of a clinical prediction rule.
نویسندگان
چکیده
BACKGROUND An evidence-based approach is needed to identify women with breast symptoms who are most likely to have breast cancer so that timely and appropriate referral can take place. AIM To report the development and validation of a clinical prediction rule for the diagnosis of breast cancer. DESIGN AND SETTING Cohort study with two prospective groups of women: those presenting to a symptomatic breast clinic (derivation cohort) and a separate cohort presenting to 11 general practices (validation cohort) in Tayside, Scotland. METHOD Regression analysis was used to derive a clinical prediction rule from presenting symptoms, personal and family history, and clinical findings. Validation consisted of estimating the number of breast cancers predicted to occur compared with the actual number of observed breast cancers across deciles of risk. RESULTS In the derivation cohort of 802 patients, 59 (7%) were diagnosed with breast cancer. Independent clinical predictors for breast cancer were: increasing age by year (adjusted odds ratio [AOR] 1.10, 95% confidence interval [CI] = 1.07 to 1.13); presence of a discrete lump (AOR 15.20, 95% CI = 4.88 to 47.34); breast thickening (AOR 7.64, 95% CI = 2.23 to 26.11); lymphadenopathy (AOR 3.63, 95% CI = 1.33 to 9.92); and lump ≥ 2 cm (AOR 5.41, 95% CI = 2.36 to 12.38). All eight patients with skin tethering had breast cancer. The regression model had good predictive power, identifying all five breast cancers in the validation cohort of 97 patients in the top two deciles of risk. CONCLUSION The clinical prediction rule discriminates between patients at high risk of breast cancer from those at low risk, and can be implemented as an evidence-based recommendation to enhance appropriate referral from general practice to a symptomatic breast clinic. Ongoing validation in further populations is required.
منابع مشابه
An Agent- based Modeling for Breast Tissue Simulation and the Growth and Spread of Tumor in Various Breast Cancer States
Introduction: Breast cancer is a cancer that is caused by abnormal growth of breast cells. Modeling and simulation of the growth and treatment of breast cancer, along with providing the possibility of doing experiments and research, can reduce the time and cost of treatment by predicting some cases. The purpose of the present research was to develop an agent-based model for the simulation of b...
متن کاملAn Agent- based Modeling for Breast Tissue Simulation and the Growth and Spread of Tumor in Various Breast Cancer States
Introduction: Breast cancer is a cancer that is caused by abnormal growth of breast cells. Modeling and simulation of the growth and treatment of breast cancer, along with providing the possibility of doing experiments and research, can reduce the time and cost of treatment by predicting some cases. The purpose of the present research was to develop an agent-based model for the simulation of b...
متن کاملPrediction Axillary Lymph Node Involvement Status on Breast Cancer Data
Introduction: one of the foremost usual methods for evaluating breast cancer is the removal of axillary lymph nodes (ALN) which include complications such as edema, limited hand movements, and lymph accumulation. Although studies have shown that the sentinel gland condition represents the axillary nodules context in the mammary gland, the efficacy, and safety of the guard node biopsy need to be...
متن کاملA Fuzzy Rule-based Expert System for the Prognosis of the Risk of Development of the Breast Cancer
Soft Computing techniques play an important role for decision in applications with imprecise and uncertain knowledge. The application of soft computing disciplines is rapidly emerging for the diagnosis and prognosis in medical applications. Between various soft computing techniques, fuzzy expert system takes advantage of fuzzy set theory to provide computing with uncertain words. In a fuzzy exp...
متن کاملPrediction of Breast Cancer Metastasis Using Fuzzy Models based on Data from Iranian Breast Cancer Patients
Introduction: The metastasis of breast cancer, the spread of cancer to different body parts, is considered as one of the most important factors responsible for the majority of deaths caused by breast cancer in women. Diagnosing the breast cancer metastasis at the earliest stages helps to choose the best treatment and improve the quality of life for patients. Method: In the present fundamental r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The British journal of general practice : the journal of the Royal College of General Practitioners
دوره 61 586 شماره
صفحات -
تاریخ انتشار 2011